РОССИЙСКАЯ ФЕДЕРАЦИЯ

ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2472836 (13) C1
(51)  МПК

C09K8/504   (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: по данным на 07.02.2013 - действует
Пошлина:

(21), (22) Заявка: 2011135996/03, 26.08.2011

(24) Дата начала отсчета срока действия патента:
26.08.2011

Приоритет(ы):

(22) Дата подачи заявки: 26.08.2011

(45) Опубликовано: 20.01.2013

(56) Список документов, цитированных в отчете о
поиске: RU 2283854 C2, 20.09.2006. RU 2148160 C1, 27.04.2000. RU 2212520 C1, 20.09.2003. SU 164554 A1, 07.06.1991. US 7743828 B2, 29.06.2010.

Адрес для переписки:
450078, г.Уфа, ул. Революционная, 96/2, ООО "РН-УфаНИПИнефть", пат.пов. РФ М.Б. Сафиной

(72) Автор(ы):
Стрижнев Владимир Алексеевич (RU),
Пресняков Александр Юрьевич (RU),
Нигматуллин Тимур Эдуардович (RU),
Емалетдинова Людмила Дмитриевна (RU),
Елесин Валерий Александрович (RU),
Урусов Сергей Анатольевич (RU),
Жумагазиев Ербол Тынышбаевич (KZ)

(73) Патентообладатель(и):
Общество с ограниченной ответственностью "Уфимский Научно-Технический Центр" (RU)

(54) ГЕЛЕОБРАЗУЮЩИЙ СОСТАВ

(57) Реферат:

Изобретение относится к нефтегазодобывающей промышленности и может применяться для ограничения водопритока в нефтяные и газовые скважины и прорыва газа в нефтяные скважины. Технический результат - расширение температурного интервала применения гелеобразующего состава, регулируемое время гелеобразования в температурном интервале 40-80°C, высокий эффект изоляции, снижение кислотности гелеобразующего состава. Гелеобразующий состав включает, мас.%: цеолит кристаллический NaX 9-22; гидроксохлористый алюминий остальное. 1 табл.

Изобретение относится к нефтегазодобывающей промышленности и может применяться для ограничения водопритока в нефтяные и газовые скважины и прорыва газа в нефтяные скважины.

Известны гелеобразующие композиции для регулирования проницаемости высокотемпературных пластов на основе соли алюминия, карбамида и воды (пат. РФ 1654554, МПК 7 E21B 43/22, опубл. 07.06.91; пат. РФ 2120544, МПК 7 E21B 43/22, опубл. 20.10.98). Образующийся гель является неустойчивым вследствие синерезиса при повышенных пластовых температурах. Синерезис, сопровождающийся рекристаллизацией геля гидроксида алюминия, усиливается под действием сдвиговых нагрузок.

Известен гелеобразующий состав на основе цеолитсодержащего компонента, изготовленного по ТУ 38.1011366-94, и соляной кислоты (Овсюков А.В. и др. Исследование гелеобразующей композиции на основе цеолитсодержащего компонента. Нефтепромысловое дело, 11, 1996, с.25). Недостатком известного технического решения является кратковременность эффекта водоизоляции, обусловленная низкой концентрацией цеолита и, как следствие, низкой прочностью образующегося геля с последующим его размыванием в пласте. Увеличение концентрации цеолита приводит к резкому сокращению времени гелеобразования, что недопустимо при проведении ремонтно-изоляционных работ (РИР).

Наиболее близким к предлагаемому составу является гелеобразующая система, состоящая из цеолита NaA, соляной кислоты и хлористого алюминия (алюмохлорида), (пат. РФ 2148160, МПК 7 E21B 43/22, E21B 43/32, опубл. 27.04.2000), взятых в следующем соотношении, мас.%:

Цеолит4,0-8,0
Алюмохлорид 10,0-28,0
Соляная кислота 2,0-4,6
Вода остальное

Цеолит по прототипу содержит в своем составе окислы кремния, натрия, алюминия в определенном соотношении: NaAlSiO4(2 3)H2O, выпускается по ТУ 381011366-94.

Недостатком указанного состава является узкая область его применения, ограниченная умеренными пластовыми температурами (20-30°C) и терригенным типом коллектора, что обусловлено высокой скоростью гелеобразования в высокотемпературных пластах, не приемлемой для проведения технологий РИР, и высокой кислотностью состава (pH менее 1 ед.). Соответственно, возникает проблема применения изолирующего гелеобразующего состава при высоких пластовых температурах и в карбонатных коллекторах.

Задачей изобретения является расширение температурного интервала применения гелеобразующего состава и снижение его кислотности.

Указанная задача решается тем, что гелеобразующий состав, включающий алюмосиликат цеолит и инициатор гелеобразования на основе соединения алюминия, отличается тем, что в качестве алюмосиликата содержит цеолит кристаллический NaX, a в качестве инициатора гелеобразования - гидроксохлористый алюминий при следующем соотношении компонентов, мас.%:

цеолит кристаллический NaX 9-22
гидроксохлористый алюминийостальное

В предлагаемом составе в качестве гелеобразующего реагента-алюмосиликата используется цеолит кристаллический NaX - мелкодисперсный порошок белого цвета, производимый ООО «Салаватский катализаторный завод» по СТО 05766575-002-2009. Химический состав кристаллического цеолита NaX (Na2O·Al2O3 ·2,45SiO2·6,0H2O) представлен следующим соотношением компонентов, мас.%:

Na2O14,8
Al2 O324,3
SiO2 35,1
H2O 25,8

В качестве инициатора гелеобразования применяется гидроксохлористый алюминий, выпускаемый в соответствии с ТУ 38.102163-84 и представляющий собой жидкость светло-желтого или серого с зеленоватым оттенком цвета плотностью 1,181-1,247 г/см3 с содержанием основного вещества в пересчете на AlCl3 в пределах 200-300 г/л.

Основное отличие предлагаемого цеолита кристаллического NaX от NaA (по прототипу) заключается в высоком содержании оксида кремния и щелочи. При получении цеолита кристаллического NaX мольное отношение SiO2:Al2O3 в гидрогеле перед кристаллизацией составляет 2,4-4,0, при получении цеолита NaA - 1,7-1,9. Мольное соотношение Na2O:Al 2O3 соответственно составляет 2,7-5,2 и 2,3-2,5. Количественное различие составов цеолитов NaX и NaA обусловливает их различную структуру и, следовательно, разное поведение в процессе гелеобразования в кислой среде.

Цеолит кристаллический NaX обладает повышенной устойчивостью к кислотам, в отличие от цеолита NaA, поэтому его растворение в кислотообразующем реагенте с последующим выделением кремниевой кислоты и гелеобразованием, за приемлемое для проведения РИР время, происходит при повышенных температурах. Снижению кислотности предлагаемого состава по сравнению с известным способствует увеличение количества щелочного реагента - цеолита кристаллического NaX и замена соляной кислоты гидроксохлористым алюминием.

В лабораторных условиях гелеобразующие составы готовили смешением цеолита кристаллического NaX и гидроксохлористого алюминия плотностью 1,200 г/см3 и концентрацией хлористого алюминия, равной 250 г/л, в определенных соотношениях при комнатной температуре. Образовавшуюся мелкодисперсную взвесь термостатировали при температурах 40-80°C. Время гелеобразования определяли по потере текучести исходного раствора. Результаты лабораторных исследований свойств составов сведены в таблицу.

Лабораторные исследования показали (таблица), что с увеличением количества цеолита кристаллического NaX и температуры время гелеобразования сокращается. Предлагаемый интервал концентраций цеолита кристаллического NaX 9-22 мас.% обусловлен оптимальными временем гелеобразования и прочностными свойствами неорганического геля. При концентрациях цеолита кристаллического NaX менее 9 мас.% снижается прочность образующегося геля, а более 22 мас.% - сокращается время гелеобразования, что не удовлетворяет требованиям, предъявляемым к тампонажным составам для проведения РИР в нефтяных и газовых скважинах.

В таблице для сравнения приведены данные по времени гелеобразования известного состава на основе цеолита NaA с добавлением хлористого алюминия и соляной кислоты (по прототипу). Видно, что уже при температуре 40°C (нижняя граница исследуемого интервала температур) время гелеобразования указанного состава составляет всего 30 минут, что неприемлемо для проведения РИР.

Данные по времени гелеобразование цеолита кристаллического NaX в присутствии гидроксохлористого алюминия
п/п Температура, °C Гелеобразующий состав, мас.% Время гелеобразования, час-мин
Цеолит NaXAlCl 3вода
гидроксохлористый алюминий, =1200 кг/м3 HCl
состав по прототипу (цеолит NaA)
40 828 остальное4,6 0-30
предлагаемый состав
140 22 остальное- 4-10
240 17 остальное- 4-40
340 14 остальное- 5-40
440 12 остальное- 8-20
550 22 остальное- 3-00
650 17 остальное- 4-00
750 14 остальное- 5-00
850 12 остальное- 8-00
950 11 остальное- 8-30
1060 17 остальное- 1-00
1160 14 остальное- 2-30
1260 12 остальное- 6-00
1360 11 остальное- 5-20
1470 12 остальное- 1-40
1570 11 остальное- 3-00
1670 10 остальное- 4-40
1780 10 остальное- 1-10
1880 9 остальное- 2-20

Оценку закупоривающей способности предлагаемого гелеобразующего состава производили на естественных кернах. Сначала определяли первоначальную проницаемость керна моделью пластовой воды минерализацией 15 г/л (KCl), затем в обратном направлении фильтровали гелеобразующий состав в объеме одного объема пор и выдерживали при заданной температуре в статических условиях в течение 12 часов для гелеобразования. После этого определяли проницаемость керна по воде в первоначальном направлении, моделируя депрессию на пласт. Расход технологических жидкостей на всех этапах фильтрации поддерживали постоянным.

Эффект изоляции Э рассчитывали следующим образом:

где K1, К2 - проницаемость модели пористой среды по воде до и после фильтрации гелеобразующего состава.

Для оценки закупоривающей способности предлагаемого состава были выбраны составы по примерам 1 и 18 (см. таблицу) соответственно с верхним и нижним концентрационным пределом цеолита кристаллического NaX в гелеобразующем составе.

Пример 1. Экстрагированный и высушенный керн насыщали моделью пластовой воды, определяли его начальную проницаемость по воде (К1=0,047 мкм2). После этого в обратном направлении фильтровали гелеобразующий состав, содержащий 22 г цеолита кристаллического NaX в 65 мл гидроксохлористого алюминия (см. в таблице, пример 1), керн термостатировали при температуре 40°C в течение 12 ч и после определяли его конечную проницаемость (К2=0,00041 мкм2) закачкой воды в первоначальном направлении. Рассчитывали эффект изоляции. Этот показатель составил 99,1%.

Пример 18. Аналогичен примеру 1, отличается составом гелеобразующей композиции (9 г цеолита кристаллического NaX растворили в 76 мл гидроксохлористого алюминия) и температурой, при которой термостатировали керн с гелеобразующим составом: 80°С. Эффект изоляции в данном примере составил 94,7%.

Таким образом, расширен относительно прототипа температурный интервал применения гелеобразующего состава и снижена его кислотность. Предлагаемый состав выгодно отличается от известного регулируемым временем гелеобразования (1,0-8,5 ч) в температурном интервале 40-80°C и высоким эффектом изоляции (99,1% и 94,7%). Предлагаемый состав прост в приготовлении и не требует специальной техники при использовании в промысловых условиях.


Формула изобретения

Гелеобразующий состав, включающий алюмосиликат цеолит и инициатор гелеобразования на основе соединения алюминия, отличающийся тем, что в качестве алюмосиликата содержит цеолит кристаллический NaX, а в качестве инициатора гелеобразования - гидроксохлористый алюминий при следующем соотношении компонентов, мас.%:

цеолит кристаллический NaX 9-22
гидроксохлористый алюминийостальное